

VIDYAPEETH Final JEE -Main Exam September, 2020/05-09-2020/Evening Session

5. The variation of molar conductivity with concentration of an electrolyte (X) in aqueous solution is shown in the given figure.

The electrolyte X is :

(1) CH_3COOH (2) KNO_3

(3) HCl (4) NaCl

Official Ans. by NTA (1)

- Sol. Its a weak electrolyte hence : CH₃COOH
- 6. The one that is NOT suitable for the removal of permanent hardness of water is :
 - (1) Treatment with sodium carbonate
 - (2) Calgon's method
 - (3) Clark's method
 - (4) Ion-exchange method

Official Ans. by NTA (3)

- **Sol.** Temporary hardness of water is removed by <u>clark method</u> and boiling. While permanent hardness of water is removed by treatment with sodium carbonate (Na₂CO₃), <u>calgons method</u> and <u>ion-exchange method</u>
- 7. The correct statement about probability density (except at infinite distance from nucleus) is :
 - (1) It cn be negative for 2p orbital
 - (2) It can be zero for 3p orbital
 - (3) It can be zero for 1s orbital
 - (4) It can never be zero for 2s orbital

Official Ans. by NTA (2)

8. The increasing order of boiling points of the following compounds is :

Alter

Increasing order of boiling point is :

 \Rightarrow Shows hydrogen bonding from –O–H group only

 \Rightarrow Shows strongest hydrogen bonding from both sides of –OH group as well as –NO₂ group.

VIDYAPEETH Final JEE -Main Exam September, 2020/05-09-2020/Evening Session

 \Rightarrow Shows stronger hydrogen from both side of -OH group as well as -NH₂ group.

⇒ Shows stronger hydrogen bonding from one side -OH-group and another side of $-OCH_3$ group shows only dipole-dipole interaction. ⇒ Hence correct order of boiling point is:

$$(I) < (IV) < (III) < (II)$$

- 9. The compound that has the largest H–M–H bond angle (M=N, O, S, C), is :
 - (1) H_2O (2) CH_4
 - (3) NH_3 (4) H_2S

Official Ans. by NTA (2)

10. Among the following compounds, geometrical isomerism is exhibited by :

Official Ans. by ALLEN (2 & 4)

11. Which one of the following polymers is not obtained by condensation polymerisation?
(1) Buna - N
(2) Bakelite
(3) Nylon 6
(4) Nylon 6, 6

Official Ans. by NTA (1)

Sol.
$$\boxed{\begin{array}{c} BuNa-N \\ \hline \end{array}}$$
 is an addition polymer
Buta-1, 3-diene + Acrylonitrile
CH₂=CH-CH=CH₂ CH₂=CH-C=N
 $\hline \\ \hline \\ Na \\ [BuNa-N] \end{array}$

12. The final major product of the following reaction is :

IDYAPEETH Final JEE -Main Exam September, 2020/05-09-2020/Evening Session

- 13. Hydrogen peroxide, in the pure state, is :
 - (1) non-planar and almost colorless
 - (2) linear and almost colorless
 - (3) planar and blue in color
 - (4) linear and blue in color
 - Official Ans. by NTA (1)

hydrogen peroxide, in the pure state, is nonplanar and almost colourless (very pale blue) liquid.

- **14.** Boron and silicon of very high purity can be obtained through :
 - (1) vapour phase refining
 - (2) electrolytic refining
 - (3) liquation
 - (4) zone refining

- Sol. <u>"Boron" and "Silicon"</u> of very high <u>purity can</u> <u>be obtained through :-</u>
 - zone refining method only.

While other methods are used for other metals/ elements i.e.

- (i) Vapour phase refining
- (ii) electrolytic refining
- (iii) liquation etc.

15. Lattice enthalpy and enthalpy of solution of NaCl are 788 kJ mol⁻¹ and 4 kJ mol⁻¹, respectively. The hydration enthalpy of NaCl is :

(1) -780 kJ mol⁻¹
(2) -784 kJ mol⁻¹
(3) 780 kJ mol⁻¹
(4) 784 kJ mol⁻¹
Official Ans. by NTA (2)

Sol.
$$H = +788$$

 $MaCl(s) \xrightarrow{\Delta H = 4} NaCl(aq)$
 $\Delta H = ?$

$$4 = 788 + \Delta H$$
$$\Delta H = -784 \text{ kJ}$$

- 16. Reaction of ammonia with excess Cl₂ gives :
 (1) NH₄Cl and N₂
 (2) NCl₃ and NH₄Cl
 (3) NH₄Cl and HCl
 - (4) NCl_3 and HCl

Official Ans. by NTA (4)

Sol.
$$NH_3 + 3Cl_2 \longrightarrow NCl_3 + 3HCl_3$$

- 17. The correct order of the ionic radii of O²⁻, N³⁻, F⁻, Mg²⁺, Na⁺ and Al³⁺ is :
 (1) Al³⁺ < Na⁺ < Mg²⁺ < O²⁻ < F⁻ < N³⁻
 (2) N³⁻ < O²⁻ < F⁻ < Na⁺ < Mg²⁺ < Al³⁺
 (3) Al³⁺ < Mg²⁺ < Na⁺ < F⁻ < O²⁻ < N³⁻
 (4) N³⁻ < F⁻ < O²⁻ < Mg²⁺ < Na⁺ < Al³⁺
 Official Ans. by NTA (3)
- Sol. Correct order of size for isoelectronic species. $Al^{3+} < Mg^{2+} < Na^+ < F^- < O^{2-} < N^{3-}$
- 18. Consider the complex ions, trans-[Co(en)₂Cl₂]⁺ (A) and cis-[Co(en)₂Cl₂]⁺ (B). The correct statement regarding them is :
 - (1) both (A) and (B) can be optically active
 - (2) both (A) and (B) cannot be optically active
 - (3) (A) can be optically active, but (B) cannot be optically active
 - (4) (A) cannot be optically active, but (B) can be optically active

Official Ans. by NTA (4)

4

PEETH Final JEE -Main Exam September, 2020/05-09-2020/Evening Session

Sol. (A) *trans*- $[Co(en)_2Cl_2]^+$

 \Rightarrow (A) is trans form and shows plane of symmetry which is optically inactive (not optically active)

 \Rightarrow (B) is cis form and does not shows plane of symmetry, hence it is optically active.

19. Adsorption of a gas follows Freundlich adsorption isotherm. If x is the mass of the gas adsorbed on mass m of the adsorbent, the

Sol.
$$\frac{x}{m} = K.P.^{1/n}$$
 $\begin{pmatrix} \frac{x}{m} & T_1 \\ T_2 & (T_2 > T_1) \end{pmatrix}$

20. The major product formed in the following reaction is :

 $CH_{3}CH = CHCH(CH_{3})_{2} \xrightarrow{HBr}$ (1) CH₃ CH₂ CH₂ C(Br) (CH₃)₂
(2) Br(CH₂)₃ CH(CH₃)₂
(3) CH₃ CH₂ CH(Br) CH(CH₃)₂
(4) CH₃ CH(Br) CH₂ CH(CH₃)₂
Official Ans. by NTA (1)
Official Ans. by ALLEN (4)

Addition of HBr according to M.R.

21. The number of chiral carbons present in sucrose

VIDYAPEETH Final JEE -Main Exam September, 2020/05-09-2020/Evening Session

Sol.
$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

= $(\Delta U^{\circ} + \Delta n_{g}RT) - T\Delta S^{\circ}$
= $\left[\left\{ -20 + (-1) \right) \frac{8.314}{1000} \times 298 \right\} - \frac{298}{1000} \times (-30) \right] kJ$
= $-13.537572 \ kJ$
= $-13537.57 \ Joule$

23. For a reaction X + Y ⇒ 2Z, 1.0 mol of X, 1.5 mol of Y and 0.5 mol of Z were taken in a 1 L vessel and allowed to react. At equilibrium, the concentration of Z was 1.0 mol L⁻¹. The equilibrium constant of the reaction is

 $-----\frac{x}{15}$. The value of x is _____.

Official Ans. by NTA (16)

X + Y = 2ZSol. t = 0 1 1.5 0.5 At eq. 0.75 1.25 1

$$K_{eq.} = \frac{1^2}{\frac{3}{4} \times \frac{5}{4}} = \frac{16}{15}$$

24. The volume, in mL, of 0.02 M K₂Cr₂O₇ solution required to react with 0.288 g of ferrous oxalate in acidic medium is_____.
(Molar mass of Fe = 56 g mol⁻¹)
Official Ans. by NTA (50.00)

Sol.
$$K_2Cr_2O_7 + FeC_2O_4 \longrightarrow Cr^{+3} + Fe^{+3} + CO_2$$

 $n = 6$ $n = 3$

$$\frac{0.02 \times 6 \times V(mL)}{1000} = \frac{0.288}{144} \times 3$$

 \Rightarrow V = 50mL

- 25. Considering that $\Delta_0 > P$, the magnetic moment (in BM) of $[Ru(H_2O)_6]^{2+}$ would be______. Official Ans. by NTA (00)
- Sol. Magnetic moment (in B.M.) of $[Ru(H_2O)_6]^{2+}$ would be; while considering that $\Delta_0 > P$, $Ru_{(44)}$; $[Kr]4d^75s^1$ (in ground state) \Rightarrow In $Ru^{2+} \Rightarrow 4d^6 \Rightarrow (t_2g)^6(eg)^0$

 \Rightarrow Here number of unpaired electrons in Ru²⁺ = (t₂g)⁶ (eg)⁰ = 0 and Hence

 $\mu_{\rm m} = \sqrt{n(n+2)}$ B.M. = 0 B.M.