FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020

(Held On Thursday 03rd SEPTEMBER, 2020) **TIME: 9 AM to 12 PM**

MATHEMATICS

TEST PAPER WITH SOLUTION

- 1. A die is thrown two times and the sum of the scores appearing on the die is observed to be a multiple of 4. Then the conditional probability that the score 4 has appeared atleast once is:
 - $(1) \frac{1}{8}$
- (2) $\frac{1}{9}$
- (3) $\frac{1}{3}$

Official Ans. by NTA (2)

Sol. A: Sum obtained is a multiple of 4.

 $A = \{(1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4),$ (5, 3), (6, 2), (6, 6)

B: Score of 4 has appeared at least once.

 $B = \{(1, 4), (2, 4), (3, 4), (4, 4), (5, 4), (6, 4),$ (4, 1), (4, 2), (4, 3), (4, 5), (4, 6)

Required probability = $P\left(\frac{B}{\Delta}\right) = \frac{P(B \cap A)}{P(\Delta)}$

$$=\frac{1/36}{9/36}=\frac{1}{9}$$

2. The lines

$$\vec{\mathbf{r}} = (\hat{\mathbf{i}} - \hat{\mathbf{j}}) + \ell(2\hat{\mathbf{i}} + \hat{\mathbf{k}})$$
 and

$$\vec{r} = (2\hat{i} - \hat{j}) + m(\hat{i} + \hat{j} - \hat{k})$$

- (1) Intersect when $\ell = 1$ and m = 2
- (2) Intersect when $\ell = 2$ and $m = \frac{1}{2}$
- (3) Do not intersect for any values of ℓ and m
- (4) Intersect for all values of ℓ and m

Official Ans. by NTA (3)

Sol.
$$\vec{r} = \hat{i}(1+2\ell) + \hat{j}(-1) + \hat{k}(\ell)$$

$$\vec{r} = \hat{i}(2+m) + \hat{i}(m-1) + \hat{k}(-m)$$

For intersection

$$1 + 2\ell = 2 + m$$
 (i)

$$-1 = m - 1$$
 (ii)

$$\ell = -m$$
 (iii)

from (ii) m = 0

from (iii) $\ell = 0$

These values of m and ℓ do not satisfy equation (1).

Hence the two lines do not intersect for any values of ℓ and m.

- **3**. The foot of the perpendicular drawn from the point (4, 2, 3) to the line joining the points (1, -2, 3) and (1, 1, 0) lies on the plane:
 - (1) x + 2y z = 1 (2) x 2y + z = 1
 - (3) x y 2z = 1 (4) 2x + y z = 1

Sol.

Official Ans. by NTA (4)

Equation of AB = $\vec{r} = (\hat{i} + \hat{j}) + \lambda(3\hat{j} - 3\hat{k})$

Let coordinates of $M = (1, (1 + 3\lambda), -3\lambda)$.

$$\overrightarrow{PM} = -3\hat{i} + (3\lambda - 1)\hat{j} - 3(\lambda + 1)\hat{k}$$

$$\overrightarrow{AB} = 3\hat{j} - 3\hat{k}$$

$$\therefore \overrightarrow{PM} \perp \overrightarrow{AB} \Rightarrow \overrightarrow{PM} \cdot \overrightarrow{AB} = 0$$

$$\Rightarrow$$
 3(3 λ – 1) + 9(λ + 1) = 0

$$\Rightarrow \lambda = -\frac{1}{3}$$

$$M = (1, 0, 1)$$

Clearly M lies on 2x + y - z = 1.

A hyperbola having the transverse axis of 4. length $\sqrt{2}$ has the same foci as that of the ellipse $3x^2 + 4y^2 = 12$, then this hyperbola does not pass through which of the following points?

$$(1) \left(1, -\frac{1}{\sqrt{2}}\right)$$

$$(1) \left(1, -\frac{1}{\sqrt{2}}\right) \qquad (2) \left(\sqrt{\frac{3}{2}}, \frac{1}{\sqrt{2}}\right)$$

$$(3)\left(\frac{1}{\sqrt{2}},0\right)$$

$$(3) \left(\frac{1}{\sqrt{2}}, 0\right) \qquad (4) \left(-\sqrt{\frac{3}{2}}, 1\right)$$

Official Ans. by NTA (2)

Sol. Ellipse: $\frac{x^2}{4} + \frac{y^2}{2} = 1$

eccentricity =
$$\sqrt{1-\frac{3}{4}} = \frac{1}{2}$$

$$\therefore \text{ foci} = (\pm 1, 0)$$

for hyperbola, given $2a = \sqrt{2} \implies a = \frac{1}{\sqrt{2}}$

:. hyperbola will be

$$\frac{x^2}{1/2} - \frac{y^2}{b^2} = 1$$

eccentricity =
$$\sqrt{1+2b^2}$$

$$\therefore \text{ foci} = \left(\pm \sqrt{\frac{1+2b^2}{2}}, 0\right)$$

: Ellipse and hyperbola have same foci

$$\Rightarrow \sqrt{\frac{1+2b^2}{2}} = 1$$

$$\Rightarrow$$
 $b^2 = \frac{1}{2}$

$$\therefore$$
 Equation of hyperbola : $\frac{x^2}{1/2} - \frac{y^2}{1/2} = 1$

$$\Rightarrow x^2 - y^2 = \frac{1}{2}$$

Clearly
$$\left(\sqrt{\frac{3}{2}}, \frac{1}{\sqrt{2}}\right)$$
 does not lie on it.

5. The area (in sq. units) of the region $\{(x, y) : 0 \le y \le x^2 + 1, 0 \le y \le x + 1,$ $\frac{1}{2} \le x \le 2$ } is:

(1)
$$\frac{79}{16}$$

(2)
$$\frac{23}{6}$$

(3)
$$\frac{79}{24}$$

(4)
$$\frac{23}{16}$$

Official Ans. by NTA (3)

Sol.
$$0 \le y \le x^2 + 1$$
, $0 \le y \le x + 1$, $\frac{1}{2} \le x \le 2$

Required area =
$$\int_{1/2}^{1} (x^2 + 1) dx + \frac{1}{2} (2 + 3) \times 1$$

$$=\frac{19}{24}+\frac{5}{2}=\frac{79}{24}$$

- If the first term of an A.P. is 3 and the sum of 6. its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is:
 - (1) $\frac{1}{4}$

(2) $\frac{1}{5}$

(3) $\frac{1}{7}$

Official Ans. by NTA (4)

Sol. Sum of 1st 25 terms = sum of its next 15 terms

$$\Rightarrow$$
 $(T_1 + + T_{25}) = (T_{26} + + T_{40})$

$$\Rightarrow$$
 $(T_1 + + T_{40}) = 2(T_1 + + T_{25})$

$$\Rightarrow \frac{40}{2} [2 \times 3 + (39d)] = 2 \times \frac{25}{2} [2 \times 2 + 24d]$$

$$\Rightarrow$$
 d = $\frac{1}{6}$

7. Let P be a point on the parabola, $y^2 = 12x$ and N be the foot of the perpendicular drawn from P on the axis of the parabola. A line is now drawn through the mid-point M of PN, parallel to its axis which meets the parabola at Q. If the

y-intercept of the line NQ is $\frac{4}{3}$, then:

- (1) MQ = $\frac{1}{2}$
- (2) PN = 3
- (3) MQ = $\frac{1}{4}$

Sol.

Official Ans. by NTA (3)

Let
$$P = (3t^2, 6t)$$
; $N = (3t^2, 0)$

$$M = (3t^2, 3t)$$

Equation of MQ : y = 3t

$$\therefore Q = \left(\frac{3}{4}t^2, 3t\right)$$

Equation of NQ

$$y = \frac{3t}{\left(\frac{3}{4}t^2 - 3t^2\right)}(x - 3t^2)$$

y-intercept of NQ = 4t = $\frac{4}{3}$ \Rightarrow t = $\frac{1}{3}$

$$\therefore MQ = \frac{9}{4}t^2 = \frac{1}{4}$$

$$PN = 6t = 2$$

8. For the frequency distribution:

Variate (x):

 $x_1 x_2 x_3x_{15}$

Frequency (f):

 f_1 f_2

where $0 < x_1 < x_2 < x_3 < \dots < x_{15} = 10$ and

 $\sum_{i=1}^{15} f_i > 0$, the standard deviation cannot be :

(1) 2

(2) 1

(3) 4

(4) 6

Official Ans. by NTA (4)

Sol.
$$: \sigma^2 \leq \frac{1}{4} (M - m)^2$$

Where M and m are upper and lower bounds of values of any random variable.

$$\sigma^2 < \frac{1}{4}(10-0)^2$$

$$\Rightarrow 0 < \sigma < 5$$

$$\sigma \neq 6$$
.

9.
$$\int_{-\pi}^{\pi} |\pi - |x| |dx \text{ is equal to :}$$

(1)
$$\pi^2$$

(2)
$$2\pi^2$$

(3)
$$\sqrt{2}\pi^2$$

(4)
$$\frac{\pi^2}{2}$$

Official Ans. by NTA (1)

Sol.
$$\int_{-\pi}^{\pi} |\pi - |x| |dx = 2 \int_{0}^{\pi} |\pi - x| dx$$

$$=2\int_{0}^{\pi}(\pi-x)\,\mathrm{d}x$$

$$=2\left[\pi x - \frac{x^2}{2}\right]_0^{\pi} = \pi^2$$

10. Consider the two sets:

 $A = \{m \in R : both the roots of \}$

 $x^2 - (m + 1)x + m + 4 = 0$ are real} and

$$B = [-3, 5).$$

Which of the following is not true?

(1) A - B =
$$(-\infty, -3) \cup (5, \infty)$$

(2)
$$A \cap B = \{-3\}$$

(3)
$$B - A = (-3, 5)$$

(4)
$$A \cup B = R$$

Official Ans. by NTA (1)

Sol.
$$A: D \ge 0$$

$$\Rightarrow$$
 $(m+1)^2 - 4(m+4) \ge 0$

$$\Rightarrow$$
 m² + 2m + 1 - 4m - 16 \geq 0

$$\Rightarrow$$
 m² - 2m - 15 \geq 0

$$\Rightarrow$$
 $(m-5)(m+3) \ge 0$

$$\Rightarrow$$
 m \in ($-\infty$, -3] \cup [5, ∞)

$$\therefore$$
 A = $(-\infty, -3] \cup [5, \infty)$

$$B = [-3, 5)$$

$$A - B = (-\infty, -3) \cup [5, \infty)$$

$$A \cap B = \{-3\}$$

$$B - A = (-3, 5)$$

$$A \cup B = R$$

11. If
$$y^2 + \log_e(\cos^2 x) = y$$
, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then :

(1)
$$|y''(0)| = 2$$

(2)
$$|y'(0)| + |y''(0)| = 3$$

(3)
$$|y'(0)| + |y''(0)| = 1$$
 (4) $y''(0) = 0$

Official Ans. by NTA (1)

Sol.
$$y^2 + \ln(\cos^2 x) = y$$
 $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

for
$$x = 0$$

$$y = 0$$
 or 1

Differentiating wrt x

$$\Rightarrow$$
 2yy' - 2 tan x = y'

At
$$(0, 0)$$
 y' = 0

At
$$(0, 1)$$
 y' = 0

Differentiating wrt x

$$2yy'' + 2(y')^2 - 2 \sec^2 x = y''$$

At
$$(0, 0)$$
 $y'' = -2$

At
$$(0, 1)$$
 $y'' = 2$

:.
$$|y''(0)| = 2$$

12. The function, $f(x) = (3x - 7)x^{2/3}$, $x \in R$, is increasing for all x lying in :

$$(1) (-\infty, 0) \cup \left(\frac{3}{7}, \infty\right)$$

$$(2) (-\infty, 0) \cup \left(\frac{14}{15}, \infty\right)$$

$$(3)$$
 $\left(-\infty, \frac{14}{15}\right)$

$$(4) \left(-\infty, -\frac{14}{15} \right) \cup (0, \infty)$$

Official Ans. by NTA (2)

Sol.
$$f(x) = (3x - 7)x^{2/3}$$

$$\Rightarrow$$
 f(x) = 3x^{5/3} - 7x^{2/3}

$$\Rightarrow$$
 f'(x) = $5x^{2/3} - \frac{14}{3x^{1/3}}$

$$=\frac{15x-14}{3x^{1/3}}>0$$

$$\therefore f'(x) > 0 \ \forall \ x \in (-\infty, 0) \cup \left(\frac{14}{15}, \infty\right)$$

- **13.** The value of $(2.^{1}P_{0} 3.^{2}P_{1} + 4.^{3}P_{2}$ up to 51^{th} term) + (1! 2! + 3! up to 51^{th} term) is equal to :
 - (1) 1 + (51)!
- (2) 1 51(51)!
- (3) 1 + (52)!
- (4) 1

Official Ans. by NTA (3)

Sol. S =
$$(2.^{1}p_{0} - 3.^{2}p_{1} + 4.^{3}p_{2}$$
 upto 51 terms)
+ $(1! + 2! + 3!$ upto 51 terms)

$$[\because {}^{n}p_{n-1} = n!]$$

$$S = (2 \times 1! - 3 \times 2! + 4 \times 3! \dots + 52.51!)$$

$$+ (1! - 2! + 3! \dots (51)!)$$

$$= (2! - 3! + 4! \dots + 52!)$$

$$+ (1! - 2! + 3! - 4! + \dots + (51)!)$$

$$= 1! + 52!.$$

14. If
$$\Delta = \begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ 2x-3 & 3x-4 & 4x-5 \\ 3x-5 & 5x-8 & 10x-17 \end{vmatrix} =$$

 $Ax^3 + Bx^2 + Cx + D$, then B + C is equal to :

- (1) -1
- (2) 1
- (3) -3
- (4) 9

Official Ans. by NTA (3)

Sol.
$$\Delta = \begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ 2x-3 & 3x-4 & 4x-5 \\ 3x-5 & 5x-8 & 10x-17 \end{vmatrix}$$

$$= Ax^3 + Bx^2 + Cx + D.$$

$$R_2 \rightarrow R_2 - R_1 \qquad R_3 \rightarrow R_3 - R_2$$

$$\Delta = \begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ x-1 & x-1 & x-1 \\ x-2 & 2(x-2) & 6(x-2) \end{vmatrix}$$

$$= (x - 1) (x - 2) \begin{vmatrix} x - 2 & 2x - 3 & 3x - 4 \\ 1 & 1 & 1 \\ 1 & 2 & 6 \end{vmatrix}$$

$$=-3(x-1)^2(x-2)=-3x^3+12x^2-15x+6$$

$$\therefore$$
 B + C = 12 - 15 = -3

15. The solution curve of the differential equation, $(1 + e^{-x}) (1 + y^2) \frac{dy}{dx} = y^2$, which passes through the point (0, 1), is:

(1)
$$y^2 = 1 + y \log_e \left(\frac{1 + e^x}{2} \right)$$

(2)
$$y^2 + 1 = y \left(\log_e \left(\frac{1 + e^x}{2} \right) + 2 \right)$$

(3)
$$y^2 = 1 + y \log_e \left(\frac{1 + e^{-x}}{2} \right)$$

(4)
$$y^2 + 1 = y \left(\log_e \left(\frac{1 + e^{-x}}{2} \right) + 2 \right)$$

Official Ans. by NTA (1)

Sol.
$$(1 + e^{-x}) (1 + y^2) \frac{dy}{dx} = y^2$$

$$\Rightarrow (1 + y^{-2}) dy = \left(\frac{e^x}{1 + e^x}\right) dx$$

$$\Rightarrow \left(y - \frac{1}{y}\right) = \ln(1 + e^x) + c$$

 \therefore It passes through $(0, 1) \Rightarrow c = -\ln 2$

$$\Rightarrow$$
 $y^2 = 1 + y \ln\left(\frac{1 + e^x}{2}\right)$

- If the number of integral terms in the expansion **16.** of $(3^{1/2} + 5^{1/8})^n$ is exactly 33, then the least value of n is:
 - (1) 264
- (2) 256
- (3) 128
- (4) 248

Official Ans. by NTA (2)

Sol.
$$T_{r+1} = {}^{n}C_{r}(3)^{\frac{n-r}{2}}(5)^{\frac{r}{8}}$$
 $(n \ge r)$

Clearly r should be a multiple of 8.

: there are exactly 33 integral terms

Possible values of r can be

$$0, 8, 16, \dots, 32 \times 8$$

 \therefore least value of n = 256.

If α and β are the roots of the equation **17.** $x^2 + px + 2 = 0$ and $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ are the roots of the equation $2x^2 + 2qx + 1 = 0$, then

$$\left(\alpha - \frac{1}{\alpha}\right) \left(\beta - \frac{1}{\beta}\right) \left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right) \text{ is equal to:}$$

(1)
$$\frac{9}{4}(9 + p^2)$$
 (2) $\frac{9}{4}(9 - q^2)$

$$(2) \ \frac{9}{4} (9 - q^2)$$

(3)
$$\frac{9}{4}$$
 (9 - p²) (4) $\frac{9}{4}$ (9 + q²)

(4)
$$\frac{9}{4}$$
(9 + q²)

Official Ans. by NTA (3)

Sol.
$$\alpha$$
, β are roots of $x^2 + px + 2 = 0$

$$\Rightarrow$$
 $\alpha^2 + p\alpha + 2 = 0 & \beta^2 + p\beta + 2 = 0$

$$\Rightarrow \frac{1}{\alpha}, \frac{1}{\beta}$$
 are roots of $2x^2 + px + 1 = 0$

But
$$\frac{1}{\alpha}$$
, $\frac{1}{\beta}$ are roots of $2x^2 + 2qx + 1 = 0$

$$\Rightarrow$$
 p = 2q

Also
$$\alpha + \beta = -p$$
 $\alpha\beta = 2$

$$\left(\alpha - \frac{1}{\alpha}\right) \! \left(\beta - \frac{1}{\beta}\right) \! \left(\alpha + \frac{1}{\beta}\right) \! \left(\beta + \frac{1}{\alpha}\right)$$

$$= \left(\frac{\alpha^2 - 1}{\alpha}\right) \left(\frac{\beta^2 - 1}{\beta}\right) \left(\frac{\alpha\beta + 1}{\beta}\right) \left(\frac{\alpha\beta + 1}{\alpha}\right)$$

$$=\frac{(-p\alpha-3)(-p\beta-3)(\alpha\beta+1)^2}{(\alpha\beta)^2}$$

$$= \frac{9}{4}(p\alpha\beta + 3p(\alpha + \beta) + 9)$$

$$=\frac{9}{4}(9-p^2)=\frac{9}{4}(9-4q^2)$$

18. Let [t] denote the greatest integer \leq t. If for some

$$\lambda \in R - \{0, 1\}, \lim_{x \to 0} \left| \frac{1 - x + |x|}{\lambda - x + |x|} \right| = L, \text{ then } L \text{ is}$$

equal to:

(3)
$$\frac{1}{2}$$

Official Ans. by NTA (2)

Sol. LHL:
$$\lim_{x\to 0^-} \left| \frac{1-x-x}{\lambda-x-1} \right| = \left| \frac{1}{\lambda-1} \right|$$

RHL:
$$\lim_{x \to 0^+} \left| \frac{1 - x + x}{\lambda - x + 1} \right| = \left| \frac{1}{\lambda} \right|$$

For existence of limit

LHL = RHL

$$\Rightarrow \frac{1}{|\lambda - 1|} = \frac{1}{|\lambda|} \Rightarrow \lambda = \frac{1}{2}$$

$$\therefore L = \frac{1}{|\lambda|} = 2$$

19.
$$2\pi - \left(\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{16}{65}\right)$$
 is equal to:

- $(1) \ \frac{7\pi}{4}$
- (2) $\frac{5\pi}{4}$
- $(3) \ \frac{3\pi}{2}$
- $(4) \ \frac{\pi}{2}$

Official Ans. by NTA (3)

Sol.
$$2\pi - \left(\sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) + \sin^{-1}\left(\frac{16}{65}\right)\right)$$

$$= 2\pi - \left(\tan^{-1} \left(\frac{4}{3} \right) + \tan^{-1} \left(\frac{5}{12} \right) + \tan^{-1} \left(\frac{16}{63} \right) \right)$$

$$=2\pi - \left(\tan^{-1}\left(\frac{63}{16}\right) + \tan^{-1}\left(\frac{16}{63}\right)\right)$$

$$=2\pi-\frac{\pi}{2}=\frac{3\pi}{2}$$

- **20.** The proposition $p \rightarrow \sim (p \land \sim q)$ is equivalent to:
 - $(1) (\sim p) \lor q$
- (2) q
- (3) $(\sim p) \land q$
- $(4) (\sim p) \vee (\sim q)$

Official Ans. by NTA (1)

Sol.
$$p \rightarrow \sim (p \land \sim q)$$

$$=\sim p \lor \sim (p \land \sim q)$$

$$=\sim p \lor \sim p \lor q$$

$$=\sim (p \land q) \lor q$$

$$=\sim p \vee q$$

21. Let
$$A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$$
, $x \in R$ and $A^4 = [a_{ij}]$. If

 $a_{11} = 109$, then a_{22} is equal to ______.

Official Ans. by NTA (10)

Sol.
$$A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$$

$$A^{2} = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} x^{2} + 1 & x \\ x & 1 \end{bmatrix}$$

$$A^4 = \begin{bmatrix} x^2 + 1 & x \\ x & 1 \end{bmatrix} \begin{bmatrix} x^2 + 1 & x \\ x & 1 \end{bmatrix}$$

$$= \begin{bmatrix} (x^2+1)^2 + x^2 & x(x^2+1) + x \\ x(x^2+1) + x & x^2 + 1 \end{bmatrix}$$

$$a_{11} = (x^2 + 1)^2 + x^2 = 109$$

$$\Rightarrow$$
 x = +3

$$a_{22} = x^2 + 1 = 10$$

22. If
$$\lim_{x \to 0} \left\{ \frac{1}{x^8} \left(1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right) \right\} = 2^{-k}$$
,

then the value of k is _____.

Official Ans. by NTA (8)

Sol.
$$\lim_{x \to 0} \left\{ \frac{1}{x^8} \left(1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right) \right\} = 2^{-k}$$

$$\Rightarrow \lim_{x \to 0} \frac{\left(1 - \cos\frac{x^2}{2}\right) \left(1 - \cos\frac{x^2}{4}\right)}{4\left(\frac{x^2}{2}\right)^2} = \frac{1}{8} \times \frac{1}{32} = 2^{-k}$$

$$\Rightarrow 2^{-8} = 2^{-k} \Rightarrow k = 8.$$

Sol.

23. The diameter of the circle, whose centre lies on the line x + y = 2 in the first quadrant and which touches both the lines x = 3 and y = 2, is

25. If $\left(\frac{1+i}{1-i}\right)^{\frac{11}{2}} = \left(\frac{1+i}{i-1}\right)^{\frac{1}{3}} = 1$, $(m, n \in N)$ then the

greatest common divisor of the least values of m and n is ______ .

Official Ans. by NTA (4)

Sol.
$$\left(\frac{1+i}{1-i}\right)^{m/2} = \left(\frac{1+i}{i-1}\right)^{n/3} = 1$$

$$\Rightarrow \left(\frac{(1+i)^2}{2}\right)^{m/2} = \left(\frac{(1+i)^2}{-2}\right)^{n/3} = 1$$

$$\Rightarrow$$
 (i)^{m/2} = (-i)^{n/3} = 1

$$\Rightarrow \frac{m}{2} = 4k_1 \text{ and } \frac{n}{3} = 4k_2$$

 \Rightarrow m = 8k₁ and n = 12k₂ Least value of m = 8 and n = 12.

$$\therefore$$
 GCD = 4

Official Ans. by NTA (3)

 \therefore center lies on x + y = 2 and in 1st quadrant center = $(\alpha, 2 - \alpha)$

where $\alpha > 0$ and $2 - \alpha > 0 \Rightarrow 0 < \alpha < 2$

 \therefore circle touches x = 3 and y = 2

 \Rightarrow $|3 - \alpha| = |2 - (2 - \alpha)| = radius$

$$\Rightarrow$$
 $|3 - \alpha| = |\alpha| \Rightarrow \alpha = \frac{3}{2}$

 \therefore radius = α

 \Rightarrow Diameter = $2\alpha = 3$.

24. The value of $(0.16)^{\log_{2.5} \left(\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + ... + to \infty\right)}$ is equal to _____ .

Official Ans. by NTA (4)

Sol.
$$(0.16)^{\log_{2.5}\left(\frac{1}{3} + \frac{1}{3^2} + \dots + \cos \infty\right)}$$

$$= \left(\frac{4}{25}\right)^{\log_{\left(\frac{5}{2}\right)}\left(\frac{1}{2}\right)}$$

$$= \left(\frac{1}{2}\right)^{\log_{\left(\frac{5}{2}\right)}\left(\frac{4}{25}\right)} = \left(\frac{1}{2}\right)^{-2} = 4$$